
Content Server Core Developer II
Version: 5.5

Last Revised On: November 7, 2003 2:48 pm



Fatwire, corp. PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER 
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. In no event shall Fatwire be liable for any loss of 
profits, loss of business, loss of use of data, interruption of business, or for indirect, special, incidental, or consequential 
damages of any kind, even if Fatwire has been advised of the possibility of such damages arising from this publication. 
Fatwire may revise this publication from time to time without notice. Some states or jurisdictions do not allow disclaimer of 
express or implied warranties in certain transactions; therefore, this statement may not apply to you.

Copyright © 2003 Fatwire, corp. All rights reserved.

This product may be covered under one or more of the following U.S. patents: 4477698, 4540855, 4720853, 4742538, 
4742539, 4782510, 4797911, 4894857, 5070525, RE36416, 5309505, 5511112, 5581602, 5594791, 5675637, 5708780, 
5715314, 5724424, 5812776, 5828731, 5909492, 5924090, 5963635, 6012071, 6049785, 6055522, 6118763, 6195649, 
6199051, 6205437, 6212634, 6279112 and 6314089. Additional patents pending.

Fatwire, Content Server, Content Server Bridge Enterprise, Content Server Bridge XML, Content Server COM Interfaces, 
Content Server Desktop, Content Server Direct, Content Server Direct Advantage, Content Server DocLink, Content Server 
Engage, Content Server InSite Editor, Content Server Satellite, and Transact are trademarks or registered trademarks of 
Fatwire, corp. in the United States and other countries.

iPlanet, Java, J2EE, Solaris, Sun, and other Sun products referenced herein are trademarks or registered trademarks of Sun 
Microsystems, Inc. AIX, IBM, WebSphere, and other IBM products referenced herein are trademarks or registered 
trademarks of IBM Corporation. WebLogic is a registered trademark of BEA Systems, Inc. Microsoft, Windows and other 
Microsoft products referenced herein are trademarks or registered trademarks of Microsoft Corporation. UNIX is a 
registered trademark of The Open Group. Any other trademarks and product names used herein may be the trademarks of 
their respective owners.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/) and software 
developed by Sun Microsystems, Inc. This product contains encryption technology from Phaos Technology Corporation.

You may not download or otherwise export or reexport this Program, its Documentation, or any underlying information or 
technology except in full compliance with all United States and other applicable laws and regulations, including without 
limitations the United States Export Administration Act, the Trading with the Enemy Act, the International Emergency 
Economic Powers Act and any regulations thereunder. Any transfer of technical data outside the United States by any 
means, including the Internet, is an export control requirement under U.S. law. In particular, but without limitation, none of 
the Program, its Documentation, or underlying information of technology may be downloaded or otherwise exported or 
reexported (i) into (or to a national or resident, wherever located, of) Cuba, Libya, North Korea, Iran, Iraq, Sudan, Syria, or 
any other country to which the U.S. prohibits exports of goods or technical data; or (ii) to anyone on the U.S. Treasury 
Department’s Specially Designated Nationals List or the Table of Denial Orders issued by the Department of Commerce. By 
downloading or using the Program or its Documentation, you are agreeing to the foregoing and you are representing and 
warranting that you are not located in, under the control of, or a national or resident of any such country or on any such list 
or table. In addition, if the Program or Documentation is identified as Domestic Only or Not-for-Export (for example, on the 
box, media, in the installation process, during the download process, or in the Documentation), then except for export to 
Canada for use in Canada by Canadian citizens, the Program, Documentation, and any underlying information or technology 
may not be exported outside the United States or to any foreign entity or “foreign person” as defined by U.S. Government 
regulations, including without limitation, anyone who is not a citizen, national, or lawful permanent resident of the United 
States. By using this Program and Documentation, you are agreeing to the foregoing and you are representing and 
warranting that you are not a “foreign person” or under the control of a “foreign person.”

Content Server
Content Server Flexible Assets Course: Exercises and Solutions
Document Revision Date: November 7, 2003 2:48 pm
Product Version: 5.0



3

Table of

Contents

Module 1: Asset Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Module Learning Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Terms to Know. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Lesson 1.1: Data Structure of the Flexible Asset Model . . . . . . . . . . . . . . . . . . . .  7
Flexible Asset Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Default Columns and the Flex Asset Type Database Table . . . . . . . . . . . . . . . . . . 8
The _Mungo Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Database Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Lesson 1.2: Attributes and Attribute Editors. . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
About Attribute Editors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
XML Code Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Exercise 1.2.1:  Attributes and Attribute Editors  . . . . . . . . . . . . . . . . . . . . . . . . 16

Lesson 1.3: Product Parent Definitions and Product Parents  . . . . . . . . . . . . . .  18
Product Parent Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Exercise 1.3.1:  Product Parent Definitions and Product Parents  . . . . . . . . . . . . 21

Lesson 1.4: Product Definitions and Products . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
Products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Product Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Exercise 1.4.1:  Product Definitions and Products  . . . . . . . . . . . . . . . . . . . . . . . 25

Lesson 1.5: Flex Asset Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Attribute Inheritance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Nested Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

  Module Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Module 2: Searching for Catalog Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Module Learning Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Terms to Know. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Lesson 2.1:  Creating Searchstates and Assetsets  . . . . . . . . . . . . . . . . . . . . . . . .  32



Core Developer Course: Exercises and Solutions  

4

Assetsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Searchstates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Exercise 2.1.1:  Searchstate and Assetset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Lesson 2.2: Displaying Attribute Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Displaying Attribute Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Example Data Set for the Examples in this Chapter  . . . . . . . . . . . . . . . . . . . . . . 35
Exercise 2.2.1:  Product List Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Exercise 2.2.2:  Product Details Page  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Exercise 2.2.3:  Product Details Page 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Exercise 2.2.4:  Creating Product Templates  . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Exercise 2.2.5:  (extra credit) Product List Page 2  . . . . . . . . . . . . . . . . . . . . . . . 48

  Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
  Module Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
  Activity Answer Key  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Module 3: Navigating Through a Product Tree  . . . . . . . . . . . . . . . . . . . . . . . . . .53
Module Learning Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Lesson 3.1: Low Level Database Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54
Products, Attributes, and Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Content Managers vs. Visitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Developing a Product Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Attribute Inheritance and _Mungo Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Exercise 3.1.1:  Creating a Navigation Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Lesson 3.2: Designing a Flex Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61
Flex Asset Family Members. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

  Instructor Demonstration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Creating a Flex Family.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

  Module Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



5

Module 1

Asset Taxonomy  

In this module you will learn about flexible asset model.

Module Learning Objectives
After completing this module, you will be able to:

• Define and create product attributes.

• Create attribute editors for attributes.

• Build a hierarchy of flexible assets.

Terms to Know

Terms Definition

Flexible Asset A flexible (flex) asset is one that can easily change properties, also 
called attributes. These properties will be stored in a special table as 
rows and can be easily removed or added. Unlike basic assets, assets 
of the same asset type may have different set of properties.

Attribute Attribute describes a certain feature of an asset. An attribute is itself 
an asset. The example of an attribute can be color, description, price, 
etc. An attribute can have multiple values.  

A set of attributes defines a flexible asset type.

Attribute Editor An XML based editor interface that allows users to easily enter data 
for the attribute.

Product 
Definition

A flex asset that is a set of attributes that describes a certain type of 
products.

Example: Monitors, Computers, Printers, etc.



Content Server Core Developer II  

6

Product A flex asset that is an instance of a product definition.

Example: ViewSonic Flat 15" monitor is an instance of a 
Monitors product definition.

Product Parent 
Definition

A flex asset that is a set of attributes that defines a group of 
products. 

Example: Discounted Items is a product parent definition that 
defines a group of products that were discounted due to damage. 

This product parent definition has a set of attributes, one of which 
can be discounted price.

Product Parent A flex asset that is an instance of a product parent definition.

For example, Office Merchandise is a product parent definition 
for product parents Office Furniture and Office Supplies.

Terms Definition



: Asset Taxonomy

7

Lesson 1.1: Data Structure of the Flexible Asset 
Model

In this lesson you will learn about the data structure of the flexible asset model.

Flexible Asset Model
A flex asset’s attributes are stored in a different table than the attribute values. This differs 
from the schema for basic assets where attributes and the attribute values are stored in a 
single table and each attribute corresponds to a column in that asset type’s table. Each 
attribute of a flex asset is itself an asset.  This allows instances of flex assets to vary 
widely.

Flex assets are stored in the FlexAssetType tables. Attribute names and descriptions are 
stored in FlexAttributes tables. The attribute values are stored in the 
FlexAssetType_Mungo tables. 

For example, for the Products flex asset type, all the fields that do not correspond to 
attributes are stored in the Products table:

Figure 1: Products Table

The name and description of each Product attribute is stored in the PAttributes table:

Figure 2: PAttributes Table

id createdby template renderid flextemplateid externalid 

      
A user01 MJSTemp 67845 34567 92468 

B user02 MJSTemp 67845 34568 92468 

      
 

id createdby name description updatedby 

111 user01 sku Product sku usser01 

112 user02 color Product color user01 

113 user03 price Product price user01 
 



Content Server Core Developer II  

8

The value or values of each Product attribute are stored in the Products_Mungo table:

Figure 3: Products_Mungo Table

Because of the complexity of the flex asset model, developers should use Content Server 
tags to retrieve flex asset data, rather than using SQL queries.  

Default Columns and the Flex Asset Type Database Table
In general, the default columns in the primary table for a flex asset type are the same as the 
default columns in the primary table for a basic asset type.

However, there are exceptions to this rule, as described in the following table:

Columns Desccription

category Category is not used in the flex asset model. 

renderid The ID of the template asset that is assigned to a flex asset.

attributetype The name of the attribute editor that formats the input style of 
the attribute when it is displayed in the New and Edit forms. 
This is an additional column in the primary table for flex 
attribute types.

flextemplateid The ID of the flex definition that the flex asset was created with. 
This is an additional column in the primary table for a flex asset 
type.

flexgrouptemplateid The ID of the parent definition that the flex parent asset was 
created with.  This is an additional column in the primary table 
for flex parent asset types.

id ownerid attrid floatvalue moneyvalue textvalue stringvalue

11111

22222 A 111("sku") 123789

33333 B 111("sku" 123790

44444 A 112("color") red

55555 B 112("color") blue

66666 A 113("price") 4.5

77777 B 113("price") 5.25



: Asset Taxonomy

9

The _Mungo Tables
The following columns in the _Mungo table always contain a value:

Each row in a _Mungo table also has all the following columns, but has a value (data) in 
only one of them:

Because the _Mungo tables have URL columns, a default storage directory (defdir) must 
be set for it. Use the cc.urlattrpath property in the gator.ini file to set the defdir 
for your _Mungo tables.

Database Tables
Just as flex attribute assets compose a flex asset type, multiple  flex asset types together 
compose a flex family.

Column Description

id A unique ID for each attribute value, automatically generated by 
Content Server when the flex asset is saved and the row is created. 

This is the table’s primary key.

ownerid The ID of the flex asset that the attribute value belongs to. 

(From the flex asset table: Products, for example.)

attrid The ID of the attribute name. (Found in the FlexAttributes, 

table.)

assetgroupid The ID of the flex parent from which the attribute value is inherited. 

(From the parent table: ProductGroups, for example.)

Column Description

floatvalue The value for each attribute with a data type of float.

moneyvalue The value for each attribute with a data type of money.

textvalue The value for each attribute with a data type of textvalue.

datevalue The value for each attribute with a data type of date.

intvalue The value for each attribute with a data type of int.

blobvalue If the attribute’s data type is BLOB, a pointer to the object, which is 
stored in the MungoBlobs table.

urlvalue A pointer to the data for each attribute with a data type of url.

assetvalue A pointer to the asset ID for each attribute with a data type of 
asset.

stringvalue The value for each attribute with a data type of float.



Content Server Core Developer II  

10

Each asset type in a flex family has several database tables. For example, the flex asset 
member has six tables and a flex parent type has five. This data model enables the flex 
member in a flex family to support more fields than an asset type that uses the basic data 
model can.

The four most important types of tables in the flex model are as follows:

• The primary table for the asset type

• The _Mungo table, which holds attribute values for flex assets and flex parent assets 
only

• The MungoBlobs table, which holds the values of all the flex attributes of type blob

• The _AMap table, which holds information about the inheritance of attribute values for 
flex asset and flex parents only

There are several other tables that store supporting data about the relationships between 
the flex assets as well as additional configuration information (details about search 
engines, the location of foreign attributes, publishing information, and, if revision tracking 
is enabled, version information).

Additionally, certain kinds of site information are held in the same tables that basic assets 
use. For example, the AssetPublication table specifies which Content Server sites the 
asset type is enabled for.

When you develop the templates that display the flex assets that represent your content, 
you code elements that extract and display information from the _Mungo tables and the 
MungoBlobs table.



: Asset Taxonomy

11

Lesson 1.2: Attributes and Attribute Editors
In this lesson you will learn about attributes and attribute editors

Attributes
An attribute is a CS-Direct Advantage asset that describes other  CS-Direct Advantage 
assets. Attributes have unique names. For example, an attribute named Size can be the 
size of a product that is an item of clothing.

There are three attribute-related assets:

• Product attribute – an asset that describes a product or product parent. Examples of 
product attributes are distributor, color, sku, and style.

• Content attribute – an asset that describes content assets, like advanced article, 
advanced image, or content group. Examples of content attributes are headline, 
authorname, and wordcount for articles, and width, height, and filetype for 
images.

• Attribute editor an asset that is an input field for (or presentation object) for defining 
specific types of product or content attributes. You can use the CS-Direct Advantage 
Attribute Editor to create a custom input field for defining other product or content 
attributes. For example, you can create a drop-down list for selecting an attribute 
value from a set of choices. A Size attribute can then be represented as a string that 
has only certain values, like Small, Medium, Large, or ExtraLarge. For more 
information about attribute editors, please refer to the next section. 

An attribute value is one of the following basic types:

• Date

• Float

• Integer

• Money

• String

• Text

• URL

About Attribute Editors
CS-Direct Advantage has a selection of attribute editors that you can use to create a 
custom input field (or presentation object) for defining a product attribute or content 
attribute. For example, you can create a drop-down list for selecting an attribute value 
from a set of choices, such as a set of colors or sizes. 

To create a custom input field for defining attributes, click on New and then select 
Attribute Editor from the list of asset types. The Attribute Editor form appears:

• Name – the name of the attribute presentation object. This is a required value 
(indicated by the red asterisk).

• Description – text that describes the attribute presentation object.

• Status – refers to workflow status (if applicable). The administrator assigns workflow 
to asset types.



Content Server Core Developer II  

12

• ID – a unique identifier for the presentation object. This is generated by CS-Direct 
Advantage.

• XML in file – a pointer to the XML code that defines the presentation object. Enter 
the pathname or click the Browse button to locate the XML file in the file system.

• XML – a scrolling text box in which you can type or paste XML code.

• Created – identifies your login name as the creator of this presentation object after 
you save your changes.

• Modified – identifies the login name of the individual who subsequently modifies this 
presentation object.

• Save Changes – closes the Attribute Editor and saves the presentation object. 

• Cancel – closes the Attribute Editor without saving the presentation object.

XML Code Examples
This section includes some XML examples that show how you might use the presentation 
object. There is a DTD file, named presentationobject.dtd, that is fairly simple and 
supports the following display element types:

• Text field

• Text area

• Pull-down menu

• Radio button

• Check box

• eWebEditPro Active X widget

• Pick-from-tree add button

• Remember button

The following are XML examples for each of the presentation object types.

TextField
You must specify the width (XSIZE); optionally, you can set MAXCHARS, which 
specifies the maximum number of allowable characters. The default is 256. You can also 
display a string of asterisks (*) in place of a typed entry, as a password mask for  example 
(BLANKED=”YES”; default is NO). 

The following TEXTFIELD element defines the XSIZE as 60 and the maximum number 
of characters as 80:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM 
"presentationobject.dtd">
<PRESENTATIONOBJECT NAME="TextFieldTest">
<TEXTFIELD XSIZE="60" MAXCHARS="80">
</TEXTFIELD>
</PRESENTATIONOBJECT>



: Asset Taxonomy

13

TextArea
You must specify the width (XSIZE) and height (YSIZE) in pixels. Optionally, you can 
specify the WRAPSTYLE for the text, where the legal values for WRAPSTYLE include the 
HTML TEXTAREA styles SOFT, HARD, and OFF. The default is SOFT.

The following TEXTAREA element defines the XSIZE as 40 pixels, the YSIZE as 5 pixels, 
and disables text wrapping by setting WRAPSTYLE to OFF:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM 
"presentationobject.dtd">
<PRESENTATIONOBJECT NAME="TextAreaTest">
<TEXTAREA XSIZE="40" YSIZE="5" WRAPSTYLE="OFF">
</TEXTAREA>
</PRESENTATIONOBJECT>

Pulldown
You can specify zero or more list items or a query that returns a list of items.

Optionally, you can specify the FONTSIZE for the element. The default is 3 (which is an 
HTML relative font size).

The following PULLDOWN element defines its FONTSIZE as 7 and adds three items to its 
list: red, green, and blue:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM 
"presentationobject.dtd">
<PRESENTATIONOBJECT NAME="PulldownTest">
<PULLDOWN FONTSIZE="7">
<ITEM>Red</ITEM>
<ITEM>Green</ITEM>
<ITEM>Blue</ITEM>
</PULLDOWN>
</PRESENTATIONOBJECT>

RadioButton
You can specify zero or more list items or a query that returns a list of items. Optionally, 
you can specify the FONTSIZE for the element. The default is 3 (which is an HTML 
relative font size). You can specify a horizontal or vertical layout. The default is 
horizontal.

The following RADIOBUTTONS element defines its FONTSIZE as 7,  and presents the 
results of the A Prods query in a vertical layout:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM 
"presentationobject.dtd">
<PRESENTATIONOBJECT NAME="RadioButtonTest">
<RADIOBUTTONS FONTSIZE="7" LAYOUT="VERTICAL">
<QUERYASSETNAME>
A Prods
</QUERYASSETNAME>
</RADIOBUTTONS>
</PRESENTATIONOBJECT>



Content Server Core Developer II  

14

CheckBox
You can specify zero or more list items or a query that returns a list of items. Optionally, 
you can specify the FONTSIZE for the element. The default is 3 (which is an HTML 
relative font size). You can specify a horizontal or vertical layout. The default is orizontal. 

The following CHECKBOXES element defines its FONTSIZE as 7, and presents the results 
of the A Prods query in a vertical layout:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM 
"presentationobject.dtd">
<PRESENTATIONOBJECT NAME="CheckBoxTest">
<CHECKBOXES FONTSIZE="7" LAYOUT="VERTICAL">
<QUERYASSETNAME>A Prods</QUERYASSETNAME>
</CHECKBOXES>
</PRESENTATIONOBJECT>

eWebEditPro
The eWebEditPro attribute editor automatically launches the eWebEditPro WYSIWYG 
HTML editor in the content form, for entering and editing the associated attribute value, 
typically an HTML text file. The window has various button options for adding style 
characteristics to the text content. The attribute editor definition determines which buttons 
are available. Note the following about this attribute editor:

• You must have the eWebEditPro application properly installed (available from Ektron, 
Inc., at www.ektron.com)

• Text entry for an attribute of type String is limited to 256 and for type text, to 2000. 
For text entry that exceeds these limits, make the attribute type url.

• Encoding characters (<EM> <STRONG>, and so forth) are stored as part of the attribute 
value and count against character limitations. You must specify the width (XSIZE) and 
height (YSIZE) of the edit window in pixels. You must also specify a comma-
separated list of style buttons. 

Note:  See the presentationobject.dtd file (“The DTD File”) for button and 
font options.

The following EWEBEDITPRO element defines an edit window 400 pixels wide by 200 
pixels high, with buttons for bullets, searching, spell-checking, and tables:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM 
"presentationobject.dtd">
<PRESENTATIONOBJECT NAME="eWebEditProTest">
<EWEBEDITPRO XSIZE="400" YSIZE="200"
BUTTONLIST="BULLETSBUTTON,FINDBUTTON,SPELLINGBUTTON,TABLEBU
TTON" FONTSIZE="3">
Chapter 2: Designing Catalog Assets
</EWEBEDITPRO>
</PRESENTATIONOBJECT>



: Asset Taxonomy

15

PickFromTree
You can include an add button that implies attribute selection from the site tree. NAME is a 
label for the button.

The following PICKFROMTREE element defines a pick element with the label PickTest:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM 
"presentationobject.dtd">
<PRESENTATIONOBJECT NAME="PickTest">
<PICKFROMTREE>
</PICKFROMTREE>
</PRESENTATIONOBJECT>

Remember
You can associate a button with attributes of type asset that, when clicked on a content 
form, displays a list of  “remembered” assets of the same type from which to select a value 
for the attribute being created.

The XML for the REMEMBER element is as follows:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM 
"presentationobject.dtd">
<PRESENTATIONOBJECT NAME="RememberTest">
<REMEMBER>
</REMEMBER>
</PRESENTATIONOBJECT>



Content Server Core Developer II  

16

Exercise 1.2.1: Attributes and Attribute Editors
Purpose
The objective of this lab exercise is to create a new site and create a few attributes and an 
attribute editor.

By the end of this exercise you will have several attributes created and one attribute editor. 
These attributes will be used in the lab exercises that follow in this module for product and 
product parent definitions.

Directions
Using the step-by-step procedure(s) contained in this lesson, complete the following 
action(s) in CS-Direct Advantage:

1. Log in to Content Server with the Coco/hello user name and password and choose 
the Ikea Furniture site.

2. Create the following single-value product attributes: 

- PName (string)
- IkeaColor (string)
- IkeaDescription (string)
- IkeaPrice (money)
- IkeaHeight (float)
- IkeaLength (float)
- IkeaWidth (float)
- IkeaProductImage (blob)
- IkeaFabricType (string)

Note: A good development habit is to prefix attribute names with the abbreviation of 
your site. For example, if the site is called BestBuy, then Color attribute can be named 
BBColor. This is useful for product searches when using the CS-Direct Advantage 
API. All the attributes are shared between various sites in CS-Direct Advantage.

3. Create Attribute Editor called IkeaColorList to display a drop-down list box with 
the following color values (refer to the example of “Pulldown” on page 13 ):

- white
- black
- green
- red
- silver
- blue
- brown



: Asset Taxonomy

17

4. Assign the new Attribute Editor created in the previous step to the  IkeaColor 
product attribute:

a. In the IkeaStoreDesign section of your screen, right-click on the IkeaColor 
attribute and select Edit.

b. In the Attribute Editor drop-down list box, choose the IkeaColorList attribute 
editor you would like to use for this attribute.

c. Click the Save Changes button to save the attribute.

5. Choose the already existing CopyField attribute editor and assign it to PName 
attribute.

Note

The CopyField attribute editor is going to copy the value of the Name 
field for the flex asset into the value of an attribute PName. This attribute 
is going to be used in the exerises in the next module.



Content Server Core Developer II  

18

Lesson 1.3: Product Parent Definitions and 
Product Parents

In this lesson you will learn about product parent definitions and product parents.

Some general characteristics of the flex asset model follow:

• Flex assets and flex parents are defined by selecting the flex attributes that describe 
them.

• The attributes that define the flex assets and flex parents are themselves assets. This 
means that you can use all of the content management features like workflow, access 
control, and so on with your individual attributes.

• Flex assets inherit attribute values from their parents. The definition asset types 
combined with the inheritance of attributes enable you to set up group hierarchies and 
implement some sort of taxonomy with your data.

• If you ever need to add attributes to your asset types in the future (a common 
occurrence with products), you just create the new attribute and assign it to the 
appropriate definitions. In contrast, with the basic asset model, you cannot add more 
attributes after you have created the asset type.

By using the definition asset types, you can set up multiple “templates” for the same flex 
asset type.

Product Parent Definitions
Similar to a product definition, a product parent definition serves as a template to define 
which attributes make up the product parent. In the example above, product parents 
Monitors, Printers, and Scanners all of have the same Parent Definition called 
ComputerProducts. This product parent definition has only two attributes:

• Department

• ParentCompany

All products of a product definition that is defined as a child of the ComputerProducts 
product parent definition would automatically inherit these attributes in addition to their 
own product definition attributes. In the example above, all the following will inherit the 
attributes:

• Monitors

• 15Inch

• 17Inch

• Printers

• InkJet

• Laser

• Scanners

All the products (monitors) that are listed under the 15Inch and 17Inch product 
parents will also inherit these two attributes on top of the once that product definition 
monitors have. The following is the complete set of attributes that products of the 
definition monitors will have:

• Department (inherited from the product parent)



: Asset Taxonomy

19

• ParentCompany (inherited from the product parent)

• Manufacturer

• ScreenSize

• Resolution

• Price

Often, product parent definitions can be refered to as “levels”. For example, instead of 
naming product parent definition ComputerProducts, you can call the definition 
Level2. Then all of the product parents on the same level could be of the same definition. 
Thus, product parent definition Level2 will have the following product parents:

• Headsets

• Televisions

• Monitors

• Printers

• Scanners

The parents of the product parents in the preceeding list are Audio&Video or 
Computers. They belong to a Parent Definition, which can be called Level1. 

Another product parent definition is Level3. This is the lowest level in this product tree 
and will have the following product parents:

• 15Inch

• 17Inch

• InkJet

• Laser

If, at the same level of the tree, content providers want to have product parents with two 
different set of attributes, then two distinct product parent definitions must be defined. For 
example, the company may choose to sell discounted merchandise. In this case, the editor 
creates two different product parent definitions, Full Priced Items and Discounted 
Items, which visually will be on the same level of the product tree. The Full Priced 
Items product parent definition will include the following product parents:

• Monitors

• Printers

• Scanners

The Discounted Items will include one or more product parents from group 
discounted products. The Discounted Items product parent definition was one extra 
attribute called discount, which indicates what percentage will be taken off a full price 
of the product. 



Content Server Core Developer II  

20

The following picture displays this hierarchy:

Though Discounted, Monitors, Printers, and Scanners are visually located in the 
same level of the hierarchy, they are children of different product parent definitions. The 
Discounted product parent is a child of a product parent definition called Discounted 
Items.  Similarly, Monitors, Printers, and Scanners are children of the Full 
Priced Items product parent definition.



: Asset Taxonomy

21

Exercise 1.3.1: Product Parent Definitions and 
Product Parents

Purpose
The objective of this lab exercise is to create new product parent definitions and product 
parents.

In this exercise, we will create the full product parent tree for the Ikea Furniture store 
(product parents only). At the end of the exercise, you will have a product tree similar to 
the following diagram:

Figure 4: Ikea Furniture Store Product Parent Definitions and Product Parents

Directions
Using the step-by-step procedure(s) contained in this lesson, complete the following 
action(s) in CS-Direct Advantage:

Creating Product Parent Definitions
1. Create the following product parent definitions at Level1:

a. Click Content Server, click on the New button and then click on the New Product 
Parent Definition link in the list of asset types.

b. In the Name and Description fields, type Level1.

c. Leave the Product Parents Definitions unchanged.

d. In the Attributes field, do not select the attribute(s).

2. Create the following product parent definitions at Level2:

a. Click Content Server, click on the New button and then click on the New Product 
Parent Definition link in the list of asset types.

b. In the Name and Description fields, type Level2.

c. In the Product Parents Definitions, select Level1 as a single required parent of 
Level2.

Sofas Chairs Tables

Fabric
Sofas

Leather
Sofas

Armchairs Footstools

Ikea Furniture
Store

L
ev

el
1

Coffee
Tables

Dining
Tables

L
ev

el
2



Content Server Core Developer II  

22

d. In the Attributes field, do not select the attribute(s).

Creating Product Parents
1. Create a product parent of the Level1 definition:

a. Click Content Server, click the New button, then click the New Product Parent 
link in the list of asset types.

b. In the Name field, type Chairs.

c. In the Product Parent Definition drop-down list, choose Level1, then click the 
Continue button.

2. Repeat the steps for creating product parents using the data supplied in the following 
table to create more product parents of the Level1 definition:

3. Create a product parent of Level2 definition:

a. Click Content Server, click on the New button and then click on the New 
Product Parent link in the list of asset types.

b. In the Name field, type Armchairs.

c. In the Product Parent Definition drop-down list, choose Level2 and then click 
on the Continue button.

d. In the Product Parents section, the product parents will be listed in the drop-
down list box (single parent). Select Chairs and then click the Save button.

CS-Direct will assign your Armchairs product parent to be a child of Chairs 
and will place Armchairs product parent (node) in the tree.

4. Repeat the steps for creating product parents using the data supplied in the following 
table to create more product parents of the Level2 definition:

Product Parent Product Parent 
Definition

Product Parent’s 
Parent

Chairs Level1 None

Sofas Level1 None

Tables Level1 None

Product Parent Product Parent 
Definition

Product Parent’s 
Parent

Armchairs Level2 Chairs

Footstools Level2 Chairs

Fabric Sofas Level2 Sofas

Leather Sofas Level2 Sofas

Sofa Beds Level2 Sofas

Coffee Tables Level2 Tables



: Asset Taxonomy

23

Dining Tables Level2 Tables

Product Parent Product Parent 
Definition

Product Parent’s 
Parent



Content Server Core Developer II  

24

Lesson 1.4: Product Definitions and Products
In this lesson you will learn about product definitions and products.

Products
A product is an individual saleable unit with an associated set of attribute values. Each 
product has a single product definition (see below), which determines how much 
information (or attributes) about the product appears on your catalog Web pages.

A product can also have one or more optional associated product parent, from which it 
inherits a set of attributes. A product not only has its own attributes, but can have the 
attributes of its product parent as well.

Product Definitions
A product definition is a set of attributes that defines one type, or class, of product. You 
create a named product definition that then serves as a template to create individual 
products with similar characteristics. 

For example, you can create a product definition named monitor with the following 
attributes:

• Manufacturer

• ScreenSize

• Resolution

• Price

Instances of a product definition are called products. Bellow are three instances of the 
product definition monitors:

Figure 5: Product Definitions

All products of product definition monitors would then have the same set of named 
attributes. An individual product of type monitor might have the following values:

• Manufacturer = ViewSonic

• ScreenSize = 17"

• Resolution = 1280 x 1024 

• Price = $399

eMachines17
Hewlett-

PackardPavilion17
ViewsonicMonitor

Product Definition
monitors



: Asset Taxonomy

25

Exercise 1.4.1: Product Definitions and Products
Purpose
The objective of this lab exercise is to create new product definitions and products.

Directions
In this exercise you will create several product definitions, each of which will have a set of 
attributes (both required and not required). Then, you will create products for each product 
definition and assign values to their attributes.

At the end of the exercise, you will have a product tree similar to the following diagram:

Figure 6: Completed Ikea Furniture Store Product Tree

Directions
Using the step-by-step procedure(s) contained in this lesson, complete the following 
action(s) in CS-Direct Advantage:

Creating Product Definitions:

1. In the Content Server, click the New button and then click the New Product 
Definition link in the list of asset types.

2. In the Name and Description text fields, type chairs.

3. In the Product Parents Definitions box, choose Level2.

In this field, you indicated that the Level2 product parent definition will be a parent 
of the Chairs product definition. You can change this field at any time. 

4. In the Attributes field, select the attribute(s) that will define product parent. Choose 
the following attributes for the sofas definition:

- *IkeaPrice
- *IkeaDescription

S ofas C hairs T ab les

F ab ric
S ofas

Leath er
S ofas

A rm chairs F oots tools

s ofa1 sofa4sofa3sofa2 chair2c h air1 chair3 tab le3tab le1

Ik e a  F u rn iture
S to re

L
ev

el
1

L
ev

el
2 C offee

T ab les
D in ing
T ab les

so fa s  p rod u c t d efin it ion c h a irs p rod u ct d efin ition ta b le s p rod u ct d efin ition

tab le2



Content Server Core Developer II  

26

- *IkeaWidth
- *IkeaLength
- *IkeaHeight
- *IkeaFabricType
- IkeaColor
- IkeaProductImage

5. Using the steps above and Figure 6, add the following product definitions:

- tables (*IkeaPrice, *IkeaDescription, *IkeaWidth, *IkeaLength, *IkeaHeight, 
IkeaProductImage)

- sofas (*IkeaPrice, *IkeaDescription, *IkeaWidth, *IkeaLength, *IkeaFabricType, 
IkeaProductImage)

For each product definition, select Level2 as a single required product parent 
definition. 

If you like, you can make Level2 to be a multiple required product parent. This 
allows you to assign multiple parents to a single product.

Creating Products
1. Create the first product (chair1):

a. In the Content Server, click the New button, then click the New Product link in 
the list of asset types.

b. In the Name field, type chair1.

c. In the Product Definition drop-down list, choose chairs then click the Continue 
button.

Note: Once you assign a product to a particular product definition that cannot be 
changed. In order to re-assign the product to a different definition, you need to 
delete the product and re-create it.

d. In the Product Parents section, the product parents (Armchairs and Footstools) 
will be listed in the drop-down select box (single parent). Select a product parent 
(for example, Armchair).

e. Assign values to at least all the required attributes and then click the Save button.

2. Using the preceeding steps and the data in Figure 6, add more products.

Note: CS-Direct will assign your new product to a correct product parent (node) in the 
tree. Sometimes, products can be stored under multiple product parents that belong to 
multiple product parent definitions. To do this, set the Product Definition Parent 
field to have multiple product parent definitions.

Note: When assigning products to multiple product parents, make sure that the 
attributes that are inherited from the parents have multiple values. For example, if 
product parent A and product parent B both have attribute Attribute1 the attribute 
will be inherited by the child product C. Since there could be more than one value for 
the attribute Attribute1, the child product needs to be able to inherit both of these 
values without a conflict.



: Asset Taxonomy

27

Lesson 1.5: Flex Asset Hierarchy
In this lesson you will learn about flex assets hierarchy.

Attribute Inheritance
When designing a product tree, one should keep in mind the following rules of attribute 
inheritance:

• If product1 inherits attribute1 from parent1 and parent2, then attribute1 
must be able to accept multiple values.

• If product1 that inherits the value of an attribute1 can override this value if product 
definition that defines product1 has the same attribute1.

The following example demonstrates these rules: 
 

Figure 7: Attribute Inheritance

• If discount attribute accepts multiple values, then the product will have two values 
for discount. If discount attribute accepts only a single value, then the product will 
not be saved.

• If the product only has one parent, either Desktop Computers or Damaged Items, 
then the discount attribute can be a single value. If the product definition has also 
discount attribute, then the value inherited from the product parent can be overwritten 
at the product level.

Nested Hierarchy
When designing a product tree, one has to think in terms of attributes and definitions. You 
must identify a set of attributes that a particular product should have, and think about some 
common attributes the products can inherit from the product parent.

The number of attributes that are inherited from the product parent must be limited to a 
minimum, since each of the attribute values assigned to a Product Parent will be 
propagated down to the product level of the tree. Each inherited value for each product 

Product Parent Definition: Level 2
Attributes: p_image, p_discount

Product Parent Definition: Discounts
Attributes: p_discount

Product Parent: Desktop Computers
p_image: image1.gif
p_discount: 20%

Product Parent: Damaged Items
p_discount: 15%

Product: MX-1503-computer
p_image: image1.gif
p_discount: 20%; 15%



Content Server Core Developer II  

28

parent and product will results in an additional row in the ProductGroup_Mungo and 
Product_Mungo tables. 



: Asset Taxonomy

29

 Module Summary
• There are two types of assets in the Content Server environment – basic and flex.

• A basic asset has properties that correspond to columns in the database. All the assets 
of the same asset type have the same set of properties. The properties are defined by 
the Asset Maker when the asset type is created, and cannot be modified.

• A flexible (flex) asset is one that can easily change properties, also called attributes. 
These properties are stored in a special table as rows and can be easily removed or 
added. Unlike basic assets, assets of the same asset type may have different set of 
properties.

• Flex asset fields are stored in two tables: the AssetTypeName (fixed fields only) table 
and AssetTypeName_Mungo (properties/attributes) table. AssetTypeName_Mungo 
table stores the properties for the asset type in rows rather than column; therefore, 
those properties can be easily added, deleted, and modified.

• An attribute describes a certain feature of an asset. An attribute is itself an asset. The 
example of an attribute can be color, description, price, etc. An attribute can 
have multiple values. A set of attributes defines a flexible asset type.

• An attribute describes a certain feature of an asset. The example of an attribute can be 
color, description, price, etc. 

• An attribute editor is an XML based editor interface that allows users to easily enter 
data for the attribute.

• A product definition is a flex asset, that is composed of a set of attributes which 
describe a certain type of product.

• A product is a flex asset that is an instance of a product definition. Example: Reebok 
Classic White is an instance of the Reebok Classics product definition.

• A product parent definition is a flex asset that is a set of attributes which defines a 
group of products.

• Product parent definition is a flex asset that is an instance of a product parent 
definition. For example, Athletic Shoes is a product parent definition for product 
parents Walking Shoes and Running Shoes.



Content Server Core Developer II  

30



31

Module 2

Searching for Catalog Data  

In this module you will learn how to use CS-Direct advantage API to search for catalog 
data.

Module Learning Objectives
After completing this module, you will be able to:

• Create templates for flex assets.

• Use CS-Direct assetset tags.

• Use CS-Direct searchstate tags to filter the search for flex asset.

• Learn how to display attribute values.

• Navigate and search for products in a CS-Direct Advantage site.

Terms to Know

Term Definition

searchstate A searchstate is an object which contains a set of search 
constraints.

You execute a searchstate against Content Server tables to 
create assetsets.

assetset An assetset is a group of one or more flex assets or flex 
parent assets.

LISTOBJECT A listobject contains a list of the attributes whose values 
you want to find.  When applied against an assetset, you 
derive the attribute values for the assets in that assetset.



Content Server Core Developer II  

32

Lesson 2.1:  Creating Searchstates and Assetsets 
In this lesson you will learn how to create a searchstate and use it while searching for flex 
assets.

Assetsets
An assetset is a group of one or more flex assets or flex parent assets. You use the 
assetset tags to create the set of assets and to extract the attribute values that you want 
to display.

You can retrieve the following information from an assetset:

• The values for one attribute for each of the flex assets in the assetset.

• The values for multiple attributes for each of the flex assets in the assetset.

• A list of the flex assets in the assetset.

• A count of the flex assets in the assetset.

• A list of unique attribute values for an attribute for all flex assets in the assetset.

• A count of unique attribute values for an attribute for all flex assets in the assetset.

You can create assetsets that include flex assets of more than one type, but only if those 
flex assets use the same flex attribute type.

The most commonly used assetset tags are:

• assetset:setasset

• assetset:setsearchedassets

• assetset:getmultiplevalues

• assetset:getattributevalues

• assetset:getassetlist

Searchstates
How do you obtain the IDs of the flex assets that you want to display? 

A searchstate is a set of search constraints based on the attribute values held in the _Mungo 
table for the flex asset type. You apply searchstates to assetsets.

You build a searchstate by adding or removing constraints to narrow or broaden the list of 
flex assets that are described by the searchstate. For example, the GE Lighting sample site 
uses searchstates to create drill-down searching features that visitors use to browse 
through the product catalog.

An unconstrained searchstate applied to an assetset creates an unfiltered list of all the 
assets of that type. For example, the following code sample would create an assetset that 
contains all the products in the GE Lighting catalog:

<searchstate:create name=”nolimits”/>
<assetset:setsearchedassets name=”unconstrainedAssetSet” 
constraint=”nolimits” assettypes=”Products”/>



: Searching for Catalog Data

33

To narrow the number of products in the assetset, you add constraints. For example, the 
following code sample would create an assetset that contains only the 40-watt lightbulbs 
from the catalog:

<searchstate:create name=”lightbulbs”/>

<searchstate:addsimplestandardconstraint name=”lightbulbs” 
typename=”PAttributes” attribute=”wattage” VALUE=”40”/>

<assetset:setsearchedassets name=”40WattLightbulbs” 
constraint=”lightbulbs” assettypes=”Products”/>

A constraint is a filter (restriction) that can be based on the value of an attribute or it can 
be based on another searchstate, which is called a nested searchstate.

CS-Direct Advantage searchstate can search either the _Mungo table or the attribute 
indexes created by a search engine. This means that you can mix database and rich-text 
(full-text through an index) searches in the same query. To apply a constraint against a 
search engine index, use the searchstate:addrichtextconstraint tag.

Because CS-Direct Advantage provides the searchstate tag family, which is the most 
effective way to retrieve assetsets, do not use SQL to query the flex asset database tables.



Content Server Core Developer II  

34

Exercise 2.1.1: Searchstate and Assetset
The objective of this lab exercise is to learn how to define a searchstate, add constraints to 
it, and apply the searchstate to an assetset.

Purpose
In this exercise you will first create a searchstate with no constraints and search for all the 
products in the product tree of GE Lightning. Later, you can choose to add a constraint to 
your searchstate to only search for products that you created as part of your sample site.

Directions
Complete the following action(s) in Content Server Explorer:

1. Open the ElementCatalog/IkeaFurniture/JSP/assetset element.

2. Create a blank searchstate. A blank searchstate has no constraints placed on it. 

3.  Use the tags <assetset:setsearchedassets> and 
<assetset:getassetcount> to get the total number of assets in the database. 

4. Use <ics:getvar> to show the number of assets in the database on your web page.

The number that will appear will be the total number of assets in your database.

5. Now try using similar code to find the exact number of products in our catalog.

a. Create another searchstate with a different name as well as a new assetset.

b. Use the assettypes=”Products” argument to constrain your new assetset to 
one type of asset.

6. Test your exercise in the browser by calling the IkeaFurniture/JSP/AssetSet 
page. To preview the page in Content Server, complete one of the following actions:

In the browser, type the following URL:

- http://localhost:7001/servlet/
ContentServer?pagename=IkeaFurniture/JSP/AssetSet

or

In Content Server Explorer, in the SiteCatalog, 

- right-click on the page IkeaFurniture/JSP/AssetSet and select Preview 
page.

-  Do not provide any arguments. Click the OK button.

7. Add a constraint to your searchstate to select only the products that are priced between 
$20 and $1000 dollars. 

Use the attribute IkeaPrice to find only the products (chairs, tables, or sofas) 
in the Ikea Furniture site. If you changed the name of the attribute when creating your 
products, use the appropriate name for your attribute.

8. Test your exercise again in the browser by calling the IkeaFurniture/JSP/
AssetSet page.



: Searching for Catalog Data

35

Lesson 2.2: Displaying Attribute Values
In this lesson you will learn about how to display attribute values for product parents or 
products.

Displaying Attribute Values
When you code templates for an online site that uses the flex asset model, you are 
primarily concerned with the values of flex attributes, which are assets themselves.

When you display a basic asset, you use tags that call the asset as a whole, and then 
display individual components of that asset.  In contrast, when you display a flex asset, 
you do not call the asset as a single unit.  Instead, you use tags that call only the attributes 
of the asset that you want to display.

You use searchstate tags to specify your search criteria.  This is roughly analogous to a 
SQL query. The <assetset:setsearchedassets> method applies the searchstate 
against the database and returns an assetset, which is analogous to a resultset.  Assetsets 
contain the assetids and attribute values of flex assets that match your search criteria.  You 
can then display the attribute values contained in the assetset.

Be sure that you understand the data model of the flex family (or families) that you are 
using before you begin coding template elements for your flex assets.

Example Data Set for the Examples in this Chapter
The GE Lighting sample site and the CS-Engage extensions to the Burlington Financial 
sample site illustrate the full power of the flex asset data model and the coding toolset that 
is delivered with CS-Direct Advantage. The templates and elements in the sample sites 
illustrate the code for fully functioning online sites that display a nearly real-world amount 
of data.

The example data set is based on the product flex family, as follows:

Flex Asset Type Internal Name (as 
displayed in the 
Content Server 
Interface)

Internal Name (as displayed 
in the Content Server 
Database)

flex attribute product attribute PAttributes

flex asset product Products

flex parent product parent ProductGroups

Note

Always use the internal name of the asset type when you use 
assettypes.



Content Server Core Developer II  

36

The example products in this example data set are pairs of blue jeans that have the 
following attributes:

There are four pairs of blue jeans, defined as follows:

Examples of Assetsets with One Product (Flex Asset)
The code samples in this section do the following:

• Create an assetset that contains one pair of jeans, identified by its sku number

• Log a dependency between the product asset and the rendered page(let)

• Get and display the value for the price attribute and display it

• Get and display the values for the color attribute and display them

• Get and display the values for both the price and color attribute with the same tag 
(assetset:getmultiplevalues)

Create a Searchstate and Apply It to an Assetset
This line of code creates an unfiltered searchstate named ss:

<searchstate:create name="ss"/>

Next, we can narrow the unfiltered searchstate named ss so that it finds a specific product 
in the sample data set, by providing the sku of the product:

<searchstate:addrangeconstraint name="ss" typename="PAttributes" 
attribute="sku" value=”jeans-2”/>

Now we can create an assetset named as, applying the searchstate named ss to it:

<assetset:setsearchedassets name="as" constraint="ss" 
assettypes="Products"/>

Since the value of the sku attribute is unique for each product asset, there is only one 
product in the assetset: the one whose sku value is jeans-2.

Attribute Data Type Number of Values

sku string single

color string multiple

price integer single

style text single

SKU Price Color Style

jeans-1 35 blue wide

jeans-2 30 blue, black straight

jeans-3 25 black, green straight

jeans-4 20 green flair



: Searching for Catalog Data

37

Log the Dependency
Because we plan to display information about the jeans-2 product, we need to log the 
dependency between the jeans-2 asset and the page rendered by this code.

To do that, first we need the ID of the asset. This line of code creates an IList named aslist, 
and stores all the data for the jeans-2 product-including its ID-in the list:

<assetset:getassetlist name=”as” listvarname=”aslist”/>

Now this line of code can log the dependency:

<render:logdep cid=”aslist.assetid” c=”aslist.assettype”/>

Get the Price of the Product

Next, let’s extract the price of this pair of jeans:

<assetset:getattributevalues name="as" attribute="color" 
typename="PAttributes" listvarname="pricelist"/>

Notice that even though price is a single-value attribute (which means the product only has 
one price), the assetset:getattributevalues tag returns the value of the price 
attribute as a list variable (listvarname=”pricelist”).

Display the Price of the Product
Now the following line of code can display the price of the jeans-2 product:

Price: <ics:listget listname=”pricelist” fieldname=”value”/><br/>

And this is the result:

Price: 30

Get the Colors for the Product
Next, let’s determine which colors this pair of jeans is available in. As specified above, the 
color attribute is a multiple-value attribute. Because the 
assetset:getattributevalues tag works the same whether an attribute is a single-
value or a multiple-value attribute, we use the tag exactly as we did for single-value price 
attribute:

<assetset:getattributevalues name="as" attribute="color" 
typename="PAttributes" listvarname="colorlist"/>



Content Server Core Developer II  

38

Display the Colors of the Product
Now the following code can display the colors for the jeans-2 product, and, because this 
product can have more than one color, the code loops through the list:

Colors:
 
<ics:listget listname="colorlist" fieldname="#numRows" 
output="rows"/>
<ics:if condition="<%= ics.GetVar("rows").compareTo("0") == 0 %>">

<ics:then>
No values available for this attribute

</ics:then>
<ics:else>

<!-- list all the values for an attribute here -->
<ics:listloop listname="colorlist" maxrows='<%= 

ics.GetVar("rows") %>'>
<ics:listget listname=”colorlist” fieldname=”value”/><br/

>
</ics:listloop>

And this is the result:

Colors: black blue

Create a List Object for the <assetset:getmultiplevalues> tag
In general, you should not use the assetset:getattributevalues tag when you 
want to get the value for more than one attribute.

The <assetset:getmultiplevalues> tag gets and scatters the values from more than 
one attribute, for all the assets in an assetset. Because the tag makes only one call to the 
database for all the attribute values, it performs the query more efficiently than using 
multiple <assetset:getattributevalues> tags.

Before you can use this tag, however, you must use the listobject tags to create a list 
object, which contains the attributes whose values you would like to retrieve. The list 
object is passed into the <assetset:getmultiplevalues> tag, which then returns the 
values of the attributes named in the list object. The list object needs one row for each 
attribute that you want to get.

This next line of code creates a list object named lo that has columns named 
attributetypename, attributename, and direction.

<listobject:create name="lo" 
columns="attributetypename,attributename,direction"/> 

Then, this line adds a row to the list object for each attribute, color and price:

<listobject:addrow name="lo"> 
    <listobject:argument name="attributetypename" 
value="PAttributes"/>
    <listobject:argument name="attributename" value="price"/>
    <listobject:argument name="direction" value="none"/>
</listobject:addrow>

<listobject:addrow name="lo"> 
    <listobject:argument name="attributetypename" 
value="PAttributes"/>



: Searching for Catalog Data

39

    <listobject:argument name="attributename" value="color"/>
    <listobject:argument name="direction" value="none"/>
</listobject:addrow>  

The next line of code converts the list object to a list variable named lolist:

<listobject:tolist name="lo" listvarname="lolist"/> 

Get and display values for price and color attributes with 
<assetset:getmultiplevalues> tag for a single product
And now we can get the values for both the price and the color attribute from our original 
assetset, named as:

<assetset:getmultiplevalues name=”as” list=”lolist” 
byasset=”false” prefix=”multi”/>

Display the Value of Price and Color for the jeans-2 Product
Now that the values are stored in the list variable (lolist), the following code can display 
all the values for all the attributes:

<br><b>Price:</b> 
<ics:if condition='<%= ics.GetErrno() != 0%>'>

<ics:then>
No values available for this attribute

</ics:then>
<ics:else>

<!-- list all the values for an attribute here -->
<ics:listloop listname="multi:price">

<ics:listget listname="multi:price" fieldname="value"/>
</ics:listloop>

</ics:else>
</ics:if>

<br><b>Color:</b>
<ics:if condition='<%= ics.GetErrno() != 0%>'>

<ics:then>
No values available for this attribute

</ics:then>
<ics:else>

<!-- list all the values for an attribute here -->
<ics:listloop listname="multi:color">

<ics:listget listname="multi:color" fieldname="value"/>
</ics:listloop>

</ics:else>
</ics:if>

This code sets up a nested loop that loops through all the attributes in the lolist variable, 
and then loops through all the distinct attribute values for each of the attributes in the 
lolist list variable.

The resulting page will look like this:

price is: 30

color is: blue black



Content Server Core Developer II  

40

Get and display values for price and color attributes with 
<assetset:getmultiplevalues> tag for multiple products
And now we can get the values for both the price and the color attribute from our original 
assetset, named as:

<assetset:getassetlist name="as" listvarname="asset_list"/>
<assetset:getmultiplevalues name=”as” list=”lolist” 
byasset=”false” prefix=”multi”/>

Display the Value of Price and Color for multiple products
<%
  IList resultList = ics.GetList("asset_list");

  for (int j=1; j <= resultList.numRows(); j++) {
  resultList.moveTo(j);
  
  out.write ("<br>Asset ID: " + resultList.getValue("assetid"));
  
  IList plist = ics.GetList("multi:" + 
resultList.getValue("assetid") + ":price");
  IList clist = ics.GetList("multi:" + 
resultList.getValue("assetid") + ":color");

  if (plist != null && plist.hasData()) {
      for (int i = 1; i <= plist.numRows(); i++) {
        plist.moveTo(i);
        out.write("<br>Price: " + plist.getValue("value"));
      } //for 

} else {
      out.write("<br>Price: attribute has no data");
    } 

  if (clist != null && clist.hasData()) {
      for (int i = 1; i <= clist.numRows(); i++) {
        clist.moveTo(i);
        out.write("<br>Color: " + clist.getValue("value"));
      } //for 

} else {
out.write("<br>Color: attribute has no data");

  }
  }
  %>



: Searching for Catalog Data

41

Exercise 2.2.1: Product List Page
The objective of this lab exercise is to learn how to create a listobject. A listobject is used 
to create a resultset using information from an assetset.

Purpose
In this exercise you will first create a listobject, which will consist of several rows. Each 
row will correspond to a particular attribute. You will then apply the listobject to an 
assetset to filter the assetset to only those assets that have the values for all of the attributes 
in the listobject. As the result of your search you will receive a resultset in the form of an 
IList. You will then traverse the resultset to display all of the values of the attributes for 
your assets.

Directions
Complete the following action(s) in Content Server Explorer:

1. Open the ElementCatalog/IkeaFurniture/JSP/productlist element.

2. Using the assetset you created in your last exercise, create a list object that will find 
the values of the IkeaPrice and IkeaColor attributes for all the products in the 
assetset.

a. Use the <listobject:create>, <listobject:addrow> and 
<listobject:tolist> tags to create your listobject.

b. You will need to use one <listobject:addrow> tag for each IkeaPrice and 
IkeaColor attribute.  

3. Using the <assetset:getassetlist> tag, apply the listobject you created to an 
assetset. This will return a resultset somelist with sorted values of attributes. 

4. Create an HTML table by looping through all the values of IkeaPrice and 
IkeaColor for your products. 

a. Use the Content Server <ics:listloop> and <ics:listget> tag to traverse 
the resultset returned in the previous step. 

b. For each row in the resultset, using the <ics:getvar> tag, display the asset ID 
and the values for PName and IkeaPrice attributes.

Use the format SORT_attributename to reference the attribute values returned 
in the list somelist. For example:
<ics:listget listname=”somelist” fieldname=”SORT_IkeaPrice”/
> 

Use assetid to reference the ID of the asset. For example:
<ics:listget listname=”somelist” fieldname=”assetid”/>

Note

 All the attribute names are case sensitive. You can select any set of 
attributes that you want to search for. Make sure that at least one product 
in your product tree has values for all of the attributes that you include in 
the listobject.



Content Server Core Developer II  

42

5. Test your exercise in the browser by calling the IkeaFurniture/JSP/
ProductList page. To preview the page in Content Server, complete one of the 
following actions:

- Type the following URL in your browser:
http://localhost:7001/servlet/
ContentServer?pagename=IkeaFurniture/JSP/ProductList

or

- Using Content Server Explorer, in the SiteCatalog, right-click on the page 
IkeaFurniture/JSP/ProductList and select Preview page.
Do not provide any arguments and click OK.



: Searching for Catalog Data

43

Exercise 2.2.2: Product Details Page
The objective of this lab exercise is to learn how to use the tag 
<assetset:getattributevalues> to display the values for attributes for a single 
product.

Purpose
In this exercise, unlike in the previous ones, where you were dealing with multiple assets 
(products), you will be only working with the single asset (product). You will first learn 
how to set an assetset to a single product id. You will then use 
<assetset:getattributevalues> tag to get the value(s) of an individual attribute 
for the product in the assetset.

Directions
Complete the following action(s) in Content Server Explorer:

1. Using the Content Server Explorer, open the IkeaFurniture/JSP/
productdetails element.

2. To accept, evaluate, and print the product ID passed to this page, add the following 
code to your element :

Product ID: <ics:getvar name=”cid”>

3. Use the <assetset:setasset> tag to create a single-asset assetset. Set the assetset 
to the value of cid (product ID).

4. Use the <assetset:getattributevalues> tag to get the attribute value for 
product name (PName) product description (IkeaDescription) and the value for 
the Color attribute (IkeaColor). The resultset returned by the 
<assetset:getattributevalues> will contain the values for the attributes.

Using <assetset:getattributevalues>, you can display the values for other 
attributes. Use the correct names for your attributes.

5. Test your exercise in the browser by calling the IkeaFurniture/JSP/
ProductDetails page. To preview the page in Content Server, complete one of the 
following actions:

- Type the following URL in your browser:
http://localhost:7001/servlet/
ContentServer?pagename=IkeaFurniture/JSP/
ProductDetails&cid=ProductID

6. In the previous exercise you have created a product list page. In the 
IkeaFurniture/JSP/productlist element, create a hypertext link that will link 
this page to your IkeaFurniture/JSP/ProductDetails page and pass the 
variable assetid with the URL. Your ProductDetails page should accept 
assetid as a product id and display its details.

7. Test your exercise again in the browser by calling the IkeaFurniture/JSP/
ProductList page first and then selecting one of the products on the page.



Content Server Core Developer II  

44

Exercise 2.2.3: Product Details Page 2
The objective of this lab exercise is to learn how to use the tag 
<assetset:getmultiplevalues> to display the values for multiple attributes for a 
single product.

Purpose
In this exercise you will use the <assetset:getmultiplevalues> tag to get the 
values of multiple attributes for a single product in the assetset. You will first need to 
create a listobject with all the attributes that you want to view in a product and then apply 
this listobject to an assetset.

Directions
Complete the following action(s) in Content Server Explorer:

1. Using Content Server Explorer, open the IkeaFurniture/JSP/productlist 
element. Change the hyperlink created in the previous exercise to IkeaFurniture/
JSP/ProductDetails2 page. Leave the rest of the code unchanged.

2. Open the IkeaFurniture/JSP/productdetails2 element.

3. Similar to the previous exercise, use the <assetset:setasset> tag to create a 
single-asset assetset. Set the assetset to the value of cid (product ID).

4. Create a listobject with the following attributes as rows:

- PName
- IkeaPrice
- IkeaColor
- IkeaHeight
- IkeaLength
- IkeaWidth

5. Use the <assetset:getmultiplevalues> tag to apply the listobject created 
in the previous step to an assetset.

6. Use <assetset:getmultiplevalues> to return separate lists of values for each 
attribute in the listobject. The name of the list for each attribute can be referred to 
as following: prefix:attributename (the prefix should be specified as argument 
in the <assetset:getmultiplevalues> tag). Please refer to the tag syntax and 
the examples in the “Create a List Object for the <assetset:getmultiplevalues> tag” on 
page 38 of this lesson. 

Note

For the future use of the listobject with the <assetset:getmultiplevalues> 
tag in this version of the product, set the direction argument in your 
listobject to none.



: Searching for Catalog Data

45

7. For each attribute complete all of the following steps:

a. Check whether the list is not empty by using the conditional statement with the 
IList predicate. For example, to check whether the product has at least one value 
for an attribute refer to code examples in “Display the Value of Price and Color 
for the jeans-2 Product” on page 39 in this lesson)

b. If the list is not empty, display the values in the list. 

c. If the list is empty, indicate that no attribute value exists.

8. Test your exercise in the browser by calling the IkeaFurniture/JSP/
ProductList page first and then selecting one of the products on the page.

Note

When using <assetset:getmultiplevalues> with a single asset, set 
the byasset argument to false. If you set it to true, you will have to 
know the ID of the asset in order to access the attribute values.



Content Server Core Developer II  

46

Exercise 2.2.4: Creating Product Templates
The objectives of this exercise to learn how to create different Product templates for 
different Product definitions.

Purpose
In this exercise you will use create several templates that will help content users to 
preview the products in the CS-Direct Advantage UI. 

Directions
Complete the following action(s) in Content Server Direct Advantage Interface:

Creating a Product Template for the Chairs Product Definition
1. If you are not already logged in, log in to the IkeaFurniture site with the Coco/

hello user name and password.

2. In the top left corder of the screen, click the New tab. The New Screen appears with 
the list of asset types enabled in the Ikea Furniture site.

3. Click the New Template link. The Template form appears.

4. In the Name and field, type ChairProductTemplate.

5. From the For the Asset Type drop-down list box, select Products and then click the 
Continue button.

6. In the Description field, type the following:

Template to display attribute values for Products of chairs 
definition

7. From the Source drop-down menu, select IkeaFurniture.

8. From the Applies to subtypes: (Product Definitions) box select chairs. 

You can select multiple Product Definitions that this template could be used for if you 
think that they share the same attributes.

9. In the Create Template Element? section, click JSP.

10. In the Template Element Description field, enter a description of the template. 
When you save this template asset, the information in this field is written to the 
description column for the element entry in the ElementCatalog table.

11. In the Template Element Logic entry area, copy code from the productdetails2 
element that you coded in the exercise “Product Details Page 2” on page 44.

12. Modify your template code if necessary to include the attributes that chairs Product 
Definition has.

13. Click the Save button to save your template.

Creating Product Templates for other Product Definition
1. Using the steps in the “Creating a Product Template for the Chairs Product 

Definition”, create templates for other Product Definitions.

2. Modify the code for your template where you display the attributes that are 
appropriate for these definitions.



: Searching for Catalog Data

47

Testing a Product Template in the CS-Direct Advantage interface
1. Assign your template to one of the chair products assets:

a. Click the Edit button to edit a chair asset.

b. In the Template field, choose ChairProductTemplate as the default template.

c. Save your changes. 

2. Preview your chair product asset by clicking the Preview button.

3. Using the steps above, test your other templates.



Content Server Core Developer II  

48

Exercise 2.2.5: (extra credit) Product List Page 2
The objective of this lab exercise is to learn how to use the 
<assetset:getmultiplevalues> tag to display multiple attribute values for multiple 
products.

Purpose
In this exercise you will use the <assetset:getmultiplevalues> tag to get the 
values of multiple attributes for multiple products in the assetset. You will first need to 
create a listobject with all the attributes that you want to view, and then apply this 
listobject to an assetset.

Directions
Complete the following action(s) in Content Server Explorer:

1. Open the IkeaFurniture/JSP/productlist2 element.

2. Create a listobject with the following attributes as rows:

- IkeaPrice
- IkeaColor

3. Use <assetset:getassetlist> to get the list of assets that have values for all the 
attributes in the listobject.

4. Use <assetset:getmultiplevalues> to return separate lists of values for each 
attribute in the listobject. The lists will be sorted by asset.

5. Display the values for each list and each asset in the list. Please refer to the tag syntax 
and the examples in the “Display the Value of Price and Color for multiple products” 
on page 40 of this lesson. 

6. Test your exercise in the browser by calling the IkeaFurniture/JSP/
ProductList2 page.

Note

For the future use of the listobject with the <assetset:getmultiplevalues> 
tag in this version of the product, set the direction argument in your 
listobject to none.

Note

When using <assetset:getmultiplevalues> with multiple assets, 
set the byasset argument to true. 



: Searching for Catalog Data

49

 Activity
Review the previous lesson and answer the questions below. The answer key is found on 
page 35. 

Based on your understanding of CS-Direct Advantage API, answer the following 
questions:

1. If the listobject contains the following attributes:

- attr1
- attr2
- attr3

Can the product be displayed if it has 2 values for attr1 and one value for attr2?

2. What will the search return if the listobject is applied to an assetset?

3. Can the asset id be displayed when using the <assetset:getattributevalues/> 
tag on an assetset with multiple assets?

4. Can the asset id be displayed when using <assetset:getassetlist/> tag on an 
assetset with multiple assets?

True or False
Mark each statement true or false. 

1.  _____  <assetset:getattributevalues> is mainly used when displaying 
attributes for a single asset.

2.  _____  <assetset:getattributevalues> returns a list of assets.

3.  _____   <assetset:getmultiplevalues> can be used for either displaying 
multiple attribute values for a single asset or multiple attribute values for multiple 
assets in the assetset.

 



Content Server Core Developer II  

50

 Module Summary 
• An assetset is a group of one or more flex assets or flex parent assets. You use the 

assetset tags to create the set of assets and to extract the attribute values that you 
want to display.

• An assetset may include any type of flexible assets, and non-homogeneous types of 
flex assets (flex assets from more than one flex asset type). For example, an assetset 
may consist of several products and product parents.

• An assetset is a set of id(s) of assets and not a set of attribute values.

• A searchstate is a set of search constraints based on the attribute values held in the 
_Mungo table for the flex asset type. You apply searchstates to assetsets.

• A listobject is used when searching for multiple attributes in a set of assets.

• <assetset:getassetlist> will apply a listobject to an assetset and will return an 
IList of attribute values for all the attributes in the listobject.

• <assetset:getassetlist> will not return a value for an attribute for an asset that 
does not have at least one value for each attribute in the listobject.

• <assetset:getattributevalues> returns value(s) for a single attribute for each 
asset in an assetset. This tag is useful when used on an assetset that consists of a single 
flex asset.

• <assetset:getmultiplevalues> can return values for multiple attributes on 
either a single asset or multiple assets.



: Searching for Catalog Data

51

 Activity Answer Key
Below are the answers to the activities in this training guide.

Lesson 3.2

1. [T]

2. [F]

3. [T]



Content Server Core Developer II  

52



53

Module 3

Navigating Through a Product Tree  

In this module you will learn about attribute inheritance and how the attribute values are 
stored in the database. Students will also learn how to design attributes for products and 
product parents to create various content taxonomies.

Module Learning Objectives
After completing this module, you will be able to:

• Design attributes for products and product parents.

• Describe a low level database deign, _Mungo tables, attribute inheritance, and 
database performance.

• Explain how the attribute values get inherited and stored in the database.



Content Server Core Developer II  

54

Lesson 3.1: Low Level Database Design
In this lesson you will learn about attributes and attribute inheritance for products and 
product parents.

Products, Attributes, and Sites
Unlike the basic asset types, flex assets are not divided by site.  This means that you can 
use a single template to display data entered from any CS-Direct Advantage site.  For 
example, if you create a template that searches for all assets with a price attribute equal to 
$50, it is possible to retrieve both a chair from the IKEA site and a fund from Burlington 
Financial in the same assetset (i.e. resultset). 

The search in the CS-Direct Advantage API revolves around attribute names and not asset 
names. CS-Direct Advantage API tags extract attributes from the _Mungo table. In order 
to search for products that belong a specific site, a developer can:

• Create a special attribute called sitename. This attribute can be set to the name of the 
site and assigned to the top-level product parent and thus inherited by all of the 
children product parents and products. The value of the attribute should not be 
modified.

• Name all attributes with a prefix that is unique to each site. For example, all the 
attributes belonging to the GE Lighting site can start with the prefix GE (GEprice, 
GEwattage, etc).

Content Managers vs. Visitors
To understand attribute inheritance and design, consider the differences between the needs 
of the content manager and needs of the visitor. 

A content manager is a person within the company whose responsibility is to create 
hierarchy and organize products (content) in such a way that it makes sense for this 
particular organization. 

A visitor is someone who views the product (content) on a web site. 

A content manager and a visitor might have different expectations. A content manager is 
more concerned about inheritance and the right structural organization of the product line. 
A visitor is more concerned about presentation and simplicity.

Thus, a content manager may think that a table lamp product should be a part of the 
following taxonomy presented on the left of the image below. A visitor may expect a more 
simplified taxonomy for easier navigation, as shown in the picture on the right:

- Products
-- Hardware
---- Lighting
------ Lamps
-------- Table
---------- PSku=1234
---------- PSku=1235

- Products
-- Hardware
---- Lighting
------ Lamps
-------- Table
----------- HAGEL table lamp

lamp description
----------- PORFYLIT table lamp

lamp description



: Navigating Through a Product Tree

55

CS-Direct Advantage is designed to support multiple taxonomies of the same product 
(content) tree. Because the CS-Direct Advantage API always revolves around attribute 
values, it is easy to maintain single records for multiple taxonomies. The challenge is to 
come up with the right set of attributes.

Developing a Product Tree
To navigate through the content manager’s presentation of products and product parents, 
each product parent must have the additional attributes created:

All the product parent definitions should have these two attributes required, so that content 
managers will have to assign value to both of them for each product parent. For example, 
the top-level product parent Products has no parent (PParent=noparent and the 
PPName=Products). Though these attributes seem like redundant information, they are 
necessary because CS-Direct Advantage tags only view the attributes and their values—
not the asset field values. Similarly, other product parents in the content manager tree will 
have the following values for the two attributes:

Attribute Name Description

PParent The name of the product parent’s parent.

PPName The name of the product parent.

Product Parent Name Attribute Name Attribute Values

Products PParent noparent

PName Products

Hardware PParent Products

PName Hardware

Lighting PParent Hardware

PName Lighting

Lamps PParent Lighting

PName Lamps

Table PParent Lamps

PName Table



Content Server Core Developer II  

56

The following is a code sample that the developers can use when searching for all the 
product parents whose parent is Hardware:

<searchstate:create name="ss"/>
<searchstate:addsimplestandardconstraint name=“ss” 
typename=“PAttributes” attribute=”PParent" value=”Lighting“ 
immediateonly=“true”/>
<assetset:setsearchedassets name=“ProductParentSet” 
constraint="ss" assettypes=“ProductsGroups” />
<assetset:getattributevalues name=” ProductParentSet"  
typename=“PAttributes” attribute=”PName" listvarname=”nameList"/>

<ics:listget listname="nameList " fieldname="#numRows" 
output="rows"/>
<ics:listloop listname ="nameList " maxrows='<%= 
ics.GetVar("rows") %>'>

<ics:listget listname ="nameList " fieldname="value"/>
</ics:listloop> 

The search will return a product parent named Lamps.

In order to create a visitor hierarchy, one should design a different set of attributes that 
displays product parents and products in the way visitors expect them. A content manager 
should not create too many attributes, especially if they are inherited on multiple levels of 
the tree. Refer to the next section for a discussion of a lower-level database design.

Attribute Inheritance and _Mungo Tables
In the preceeding example, two attributes, PParent and PPName, will be inherited on 
each level of the tree and reassigned a different value for each product parent. This 
process, while valuable for site design, has a great impact of performance.

Each attribute value is a row in the ProductGroups_Mungo table, and every inherited 
value of an attribute is an additional row in the ProductGroups_Mungo table. Thus, in 
the example with the Products, Hardware, Lighting, and Table product parents, the 
PParent attribute will be inherited by all of the product parents listed here  and 
reassigned a different value for each one of them. This results in the following rows being 
added to the ProductGroups_Mungo table:

id ownerid attrid moneyvalue stringvalue islegal

1234 Products PParent

1235 Hardware PParent noparent

1236 Lighting PParent noparent F

1237 Table PParent noparent F

1238 Hardware PParent noparent F

1239 Lighting PParent Products

1240 Table PParent Products F

1241 Lighting PParent Products F



: Navigating Through a Product Tree

57

Because the PParent attribute of the Products product parent has been set to 
noparent, four rows have been added to the ProductGroups_Mungo table—one for the 
Products product parent, and one for each product parent who is a child of Products. 
When the Hardware product parent gets its own value (Products) for PParent 
attribute, CS-Direct Advantage overwrites the value noparent inherited from Products 
with the new value, by simply adding an extra row to the table. The old value becomes an 
illegal value. CS-Direct Advantage will not delete this value from the database, but rather 
keep the row and mark it as illegal in the islegal column (F).

This database design allows content managers to keep history for all the values of all the 
attributes values ever inherited. This gives the product a great flexibility, allowing users to 
delete and change values of inherited attributes without affecting the hierarchy.  However, 
this flexibility has a great effect on the product performance.

_Mungo tables can grow exponentially, keeping all the values as rows and accumulating 
large amounts of data. When using the CS-Direct Advantage API, the developers should 
limit their search as much as possible to restrict the number of tables accessed. Also, when 
configuring the database, it is recommended that _Mungo tables have their own table 
space in the database.

CS-Direct Advantage relies heavily on Content Server resultset caching. Since CS-Direct 
Advantage is built on top of Content Server, it caches the resultsets generated by database 
into memory. Implementing resultset caching on a site improves the performance and 
reduces the load on Content Server and the database. Outdated resultset are removed from 
the cache in one of the three ways:

• Resultsets are deleted from the cache automatically when a table changes.

• Resultsets are deleted from the cache using CatalogManager’s flushcatalog 
command.

• Resultsets time out and are deleted based on values set in the property file, 
futuretense.ini.

For more information about how to configure futuretense.ini file to use the Content Server 
resultset caching, please refer to documentation.

1242 Table PParent Hardware

1243 Table PParent Lighting F

id ownerid attrid moneyvalue stringvalue islegal



Content Server Core Developer II  

58

Exercise 3.1.1: Creating a Navigation Bar
The objective of this lab exercise is to learn how to display product navigation bar. CS-
Direct Advantage allows you to be flexible and not to display the tree on your finished 
Web site exactly the way it was built by content managers. However, in this exercise, we 
will display product parents exactly as they are created in the product tree, with only 
product parents of two levels.

Purpose
In this exercise, you will search for all the product parents of the Level1 definition in the 
product tree of Home Office furniture store. Later, you will find the children of each 
parent in the set by creating a new searchstate.

Directions
Using the step-by-step procedure(s) contained in this lesson, complete the following 
action(s) in CS-Direct Advantage:

Adding PParent and PName Attributes
1. Add the following attributes: 

- PParent

Make them both of type String and single-valued. These attributes will be used 
in the Level1 and Level2 product parent definitions.

2. Change the Level1 and Level2 product parent definitions to include PName and 
PParent and PName attributes. Make both of these attribues required. Place the 
PName at the end of the list of attributes (known bug).

3. Edit all of your product parents to assign the values to the PParent and PName 
attributes. The following tables should help you to assing the correct values to the 
attributes:

Product Parent Attribute Values

Chairs PName=Chairs

PParent=noparent

Sofas PName=Sofas

PParent=noparent

Tables PName=Tables

PParent=noparent

Armchairs PName=Armchairs

PParent=Chairs

Footstools PName=Footstools

PParent=Chairs

Fabric Sofas PName=Fabric Sofas

PParent=Sofas



: Navigating Through a Product Tree

59

Adding Code to Render Product Navigation Tree
1. Open the ElementCatalog/IkeaFurniture/JSP/navbar element.

2. Using the following steps, display products parents of Level1 definition:

a. Create a searchstate called ss1. Add a constraint to the ss1 searchstate to search 
for flex assets where the attribute PParent=”noparent”. 

b. Create an assetset called parentset1 by applying the ss1 constraint in your 
search within the  <assetset:setsearchedassets> tag. Search only for 
product parents (assettypes=”ProductGroups”). 

c. Use the <assetset:getattributevalues> tag to filter the parentset1 
assetset to only those product parents that have the attribute named PName. 

d. Use the <ics:listloop> and the <ics:listget> tags to display the name of 
each product parent in Level1.

3. Add more code to display the children of each parent of the Level1 definition.

Leather Sofas PName=Leather Sofas

PParent=Sofas

Sofa Beds PName=Sofa Beds

PParent=Sofas

Coffee Tables PName=Coffee Tables

PParent=Tables

Dining Tables PName=Dining Tables

PParent=Tables

Note

Make sure that the immediateonly argument is set to true within the 
<searchstate:addsimplesearchconstraint> tag. This ensures 
that you will only search for those product parents where the PParent 
attribute value is not inherited.

Note

Since this is a required, single-valued attribute for all the product parents, 
the <assetset:getattributevalues> tag will return the list of 
values where the number of values are the same as the number of  product 
parents in the assetset. For example, if there are only 5 product parents in 
your assetset (where  PParent=”noparent”), then the list returned will 
also have 5 values for the PName attribute (one for each product parent).

Product Parent Attribute Values



Content Server Core Developer II  

60

4. Test your exercise in the browser by calling the IkeaFurniture/JSP/NavBar 
page by typing the following URL in the browser: 

http://localhost:7001/servlet/
ContentServer?pagename=IkeaFurniture/JSP/NavBar



: Navigating Through a Product Tree

61

Lesson 3.2: Designing a Flex Family 
In this lesson you will learn about various aspects of designing a catalog product tree and 
flex assets.

Flex Asset Family Members
Most management systems utilize multiple flex asset families. How you design these 
families and the assets that compose them affects both your database and the usability of 
the management system.

As you design flex asset families you must create a balance:

• Limit the number flex parent definitions associated with a given flex definition, so that 
content providers and editors are not inundated with too many choices.

• Create enough flex parent definitions and flex definitions so that content providers 
and editors can find a definition that is appropriate for the data they want to enter.

Designing the flex asset families for your project is a process consisting of the following 
steps:

1. Determine all of the attributes you will need.

2. Determine which items have attributes with unique values.

3. Determine the number of flex definitions you need.

4. Determine the number of flex families you need

Determine the Attributes You Need
The first step in designing a flex asset family is to list all of the attributes that you need for 
your site.

Note that this means more than determining the attributes you need for your business 
requirements or the attributes that you want to display to web site visitors.

You must also determine how you want content to be displayed on the finished web site 
and how you want web site visitors to “drill down” to items that they want.

For example, if you want to display a list of the ten most recent stories submitted to a 
newspaper, you must include an attribute that holds the date and time that the story was 
submitted, allowing your developers to create logic which retrieves the most recent 
submissions. Similarly, if you would like web site visitors to search on articles based on 
the section they fall under—Sports, for example-you must include a section attribute.

Determine Which Attribute Values are Unique
Children in the asset inheritance tree inherit attributes and their values from their parents 
and grandparents. Attributes where the values must be unique for each instance of an item-
SKU, for example-are included in the flex definition, near the bottom of the asset 
inheritance tree. Conversely, attributes with common values are candidates for being item 
parents and item parent definitions, so that those values can be inherited by the individual 
items that need them.



Content Server Core Developer II  

62

Determine the Number of Flex Definitions You Need
The number of flex definitions you create affects the number of data fields that appear in 
the asset forms on the management system. The number of definitions you must create is 
determined by how different the individual flex assets at the bottom of the asset 
inheritance tree are.

Note that the number of attributes that compose a Flex Definition impacts the amount of 
time it takes for that Flex Definition’s form to load. It takes between 50 and 350 
milliseconds to display one attribute field (depending upon your attribute editor), so that 
displaying many attribute fields leads to slow forms.

In an online catalog, for example, you could create one flex definition called item which 
would act as the template for all items that the editors enter into the system.

If, however, the catalog contains very different items, like sheets and toasters, a universal 
product definition is not the best choice; sheets require fields that toasters do not, forcing 
editors to leave many fields empty. A better solution is to create two flex definitions, one 
for toasters and one for sheets, where each flex definition contains only the fields 
necessary for that type of item.

Determine the Number of Flex Families You Need
The database schema for Content Server Direct Advantage includes _Mungo tables. A 
_Mungo table contains attribute values for an associated Flex Family. _Mungo tables can 
grow very large, often containing more than a million records.

Creating multiple Flex Families is a good way to separate your data into several _Mungo 
tables in your database, thus differentiating your data and allowing you to control security 
and archiving on a Flex Family-by-Flex Family basis.

Note, however, that searching for content across multiple _Mungo tables is slower than 
searching for content in a single _Mungo table.

Flex Asset Design Tips
Use a multi-value field if an item is in more than one category-for instance, if a news story 
can be classified as both “business” and “international,” or if a movie can be classified as 
both “romance” and “musical.”



: Navigating Through a Product Tree

63

 Instructor Demonstration 
Follow along as the instructor demonstrates how to create a product parent definition and a 
new product parent.

Creating a Flex Family
Complete the following steps to create a new flex family:

1. In the Content Server Admin tab, expand Flex Family Maker and select Add New to 
add a new flex family of assets.

2. In the Flex Attribute field, select either Product Attribute or Content Attribute if 
you want to use one of the existing flex attribute types. If you would like to create a 
new flex attribute type, enter the name for your attribute in the Flex Attribute field. 
For example, you can create an eAttribute flex asset type.

3. In the Flex Parent Definition field, select either Product Parent Definition or 
Content Parent Definition if you want to use one of the existing flex parent 
definition asset types. If you would like to create a new flex parent definition, enter 
the name for your parent definition in the Flex Parent Definition field. For example, 
you can create an eParentDefinition flex parent definition asset type.

4. In the Flex Definition field, select either Product Definition or Content Definition if 
you want to use one of the already existing flex definition asset types. If you would 
like to create a new flex definition, enter the name for your flex definition in the Flex 
Definition field. For example, you can create  an eContentDefinition flex 
definition asset type.

5. In the Flex Parent field, select either Product Parent or Content Parent if you want 
to use one of the already existing flex parent asset types. If you would like to create a 
new flex parent, enter the name for your parent in the Flex Parent field. For example, 
you can create an eParent flex asset type.

6. In the Flex Asset field, select one of the following asset types: Products, Article 
(Flex), Image (Flex), PDF, or Drill Hierarchy. If you do not want to use the 
existing asset type and would like to create your own flex asset type instead, enter the 
name for you asset type in the Flex Asset field. For example, you can create an 
eDocument flex asset type.

7. In the Attributes field, select the attribute(s) that will define your product parents. 
Choose whether you want each attribute to be required or optional and whether you 
will allow this attribute to have multiple values.

8. On the next screen, click the Continue button. 

9. For the eAttribute, in the Plural field, type eAttributes. This will be the plural 
form of the flex asset type named eAttribute. 

10. In the Desc field, type eAttribute. This is how the flex asset type name will be 
displayed on the screen.

11. Repeat step 8 for all the flex assets listed on the screen. 

12. Click the Go button. Your new flex family of assets should now be created. 



Content Server Core Developer II  

64

13. Right-click on a Flex Family Maker node on the Admin tree and select Refresh. You 
should find your new asset types under each of the following categories:

- Flex Attribute Types
- Flex Parent Definition Types
- Flex Definition Types
- Flex Parent Types
- Flex Asset Types

 CS-Direct Advantage does not have a utility to delete a family of flex assets.



: Navigating Through a Product Tree

65

 Module Summary 
• Attribute values are recorded in the ProductGroups_Mungo table for a product 

parent and all of its children. Values that products inherit from their product parents 
are also recorded in this table.

• Inherited attribute values attributes are not removed from the database if they are 
overwritten by new values. Instead, they are marked void (F).

• When designing products and product parent definitions, consider limiting the number 
of attributes to a minimum, especially if those attributes are inherited by multiple 
products and product parents.

• When designing flex assets consider the following:

- Determine the attributes you need
- Determine which attributes values are unique
- Determine the number of flex definitions you need
- Determine the number of flex families you need



Content Server Core Developer II  

66


